
122    communications of the acm    |   december 2011  |   vol.  54  |   no.  12

Software misbehaves all too often. 
This is a truism, but also the driving 
force behind many computing tech-
niques intended to increase software 
reliability, safety, and security, rang-
ing from basic testing to full formal 
verification. 

In this wide spectrum of approach-
es, a sweet spot is type and memory 
safety. Rather than attempting to rule 
out all bugs, type and memory safety 
focuses on strict enforcement of a few 
basic safety properties: a character 
string is not a code pointer; arrays are 
always accessed within bounds; mem-
ory blocks are not accessed after deal-
location; pointers or object references 
cannot be forged from integers; and 
so on. Such properties are enforced 
through a combination of static (com-
pile-time) type-checking, dynamic 
(runtime) checks such as array bound 
checks, and automatic memory man-
agement. These humble safety prop-
erties not only catch a number of com-
mon programming errors, but are also 
surprisingly effective at thwarting 
many security attacks such as buffer 
overrun attacks. Moreover, they can 
be leveraged to build software-en-
forced access control and isolation ar-
chitectures such as the Java and .NET 
security managers; for if object refer-
ences can be forged from integers, any 
software-only security infrastructure 
can be circumvented.

In the mid-1990s came the realiza-
tion that type and memory safety is 
not just for high-level programming 
languages. Java and its bytecode veri-
fier popularized the idea that the byte-
code of a virtual machine can be made 
type-safe through a combination of 
load-time type-checking (bytecode 
verification) and runtime checks in 
the virtual machine. Going one step 
further “down,” Morrisett, Walker, 
Crary and Glew introduced Typed As-
sembly Language (TAL), which guaran-
tees type and memory safety directly at 

the level of assembly language for the 
ubiquitous x86 processor architecture. 
There are several benefits to enforcing 
type and memory safety at the level of 
bytecode or assembly language: the 
compilers no longer need to be trusted 
to preserve safety and therefore are no 
longer part of the trusted computing 
base. Moreover, type-safe interoper-
ability between different source lan-
guages can be guaranteed.

The following work by Yang and 
Hawblitzel is a major milestone in 
an ambitious research project: that 
of guaranteeing end-to-end type and 
memory safety for a complete soft-
ware stack. Leveraging the Bartok 
.NET-to-typed-x86 compiler and the 
corresponding TAL checker, it is pos-
sible to automatically obtain safety 
guarantees for most of the software 
stack written in C#—not just applica-
tion code, but also large chunks of sys-
tems code such as network protocols. 
In particular, the paper shows that 
the major part of a safe, preemptive 
scheduler for multitasking can be de-
veloped this way, which may come as a 
surprise to many readers.

However, not all parts of an operat-
ing system and runtime system can be 

shown memory-safe using only TAL. A 
major offender is the memory manag-
er (allocator, garbage collector, among 
others), which has to treat memory in 
an essentially untyped way. Similar is-
sues occur in the lowest layers of op-
erating systems (context switching, 
interrupt handling, among others). 
The standard approach at this point 
is to leave these components in the 
trusted computing base and validate 
them only by testing. Instead, Yang 
and Hawblitzel succeeded in formally 
verifying these components—which 
they call the “Nucleus” of their Verve 
operating system—against mathemat-
ical specifications (pre- and post-con-
ditions), using the Boogie deductive 
program verifier.

The minimalistic design of the 
Nucleus is elegant, and the interplay 
between its specifications and the ge-
neric safety guarantees of the TAL code 
is subtle. Perhaps the most impres-
sive aspect of this work, however, is 
the remarkable economy of means by 
which it achieves end-to-end type and 
memory safety. The high degree of au-
tomation offered by the Boogie verifier 
and Z3 automatic theorem prover does 
wonders here, resulting in an overall 
verification effort that is remarkably 
low by today’s standards.

The formal verification of high-
assurance software is making great 
progress lately. Yang and Hawblit-
zel’s work, along with other recent 
breakthroughs in software verifica-
tion such as the seL4 verified micro-
kernel of Klein et al. (see Commu-
nications, June 2010, p. 107), were 
unthinkable 10 years ago. Little by lit-
tle, one point at a time, these results 
sketch a promised land where, with 
mathematical certainty, software 
does behave properly after all.	

Xavier Leroy (xavier.leroy@inria.fr) is a senior research 
scientist at INRIA Paris-Rocquencourt, France.

© 2011 ACM 0001-0782/11/12 $10.00

Technical Perspective
Safety First! 
By Xavier Leroy

research highlights 

doi:10.1145/2043174.2043196

The following work  
is a major milestone  
in an ambitious 
research project:  
that of guaranteeing 
end-to-end type  
and memory safety  
for a complete 
software stack.




